Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Int. braz. j. urol ; 48(4): 728-729, July-Aug. 2022.
Article in English | LILACS-Express | LILACS | ID: biblio-1385143

ABSTRACT

ABSTRACT Introduction Several techniques of robotic-assisted radical prostatectomy (RARP) using the da Vinci SP (SP) have been described since its clearance by the FDA (Food and Drug Administration) in 2018 ( 1 , 2 ). Even with the expanding literature about this robot, the SP technology has been restricted to a few centers in the US and Asia due to the recent release of this robot in the marked.3 In this scenario, we provided, in this video compilation, a consensus of SP referral centers describing the current approaches and techniques of da Vinci SP Radical prostatectomy (SP-RARP). Surgical Technique We have illustrated five different techniques, including transperitoneal, extraperitoneal, Retzius-sparing, transvesical, and transperineal ( 4 - 6 ). Each surgery demonstrated crucial steps from the trocar placement until anastomosis. All approaches follow anatomic concepts and landmarks to minimize positive surgical margins, optimize oncological outcomes and promote optimal functional recovery. The trocar placement and the use of an assistant port were selected according to the operative technique of each institution. None of these surgeries had intra- or postoperative complications, and the pain management until discharge was controlled without using narcotics. All patients were discharged in less than 16 hours of surgery. Conclusion Robotic-assisted radical prostatectomy performed with the da Vinci SP is feasible and safe with optimal perioperative outcomes. Five different approaches were described in this video compilation, and we believe that the technical details provided by this multicentric collaboration are crucial for centers willing to initiate the SP approach to radical prostatectomy.

2.
Int. braz. j. urol ; 48(4): 696-705, July-Aug. 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1385146

ABSTRACT

ABSTRACT Background The da Vinci SP robot consists of an innovative single port trocar that houses a flexible camera and three biarticulated arms, which minimizes the number of incisions to assess the surgical site, allowing a less invasive procedure. However, due to its recent release in the market, the current literature reporting SP-RARP is still restricted to a few centers. In this scenario, after performing a literature search with all available techniques of SP-RARP, our objective is to report a multicentric opinion of referral centers on different techniques to approach SP-RARP. Results The SP literature is provided by only a few centers due to the limited number of this new console in the market. Five different approaches are available: transperitoneal, extraperitoneal, Retzius-Sparing, transperineal and transvesical. None of the current studies describe long-term functional or oncological outcomes. However, all approaches had satisfactory operative performance with minimum complication rates. Conclusions Several techniques of SP-RARP have been reported in the literature. We performed a multicentric collaboration describing and illustrating the most challenging steps of this surgery. We believe that the details provided in this article are useful teaching material for new centers willing to adopt the SP technology.

3.
Rev. chil. urol ; 83(3): 11-13, 2018. ilus
Article in Spanish | LILACS | ID: biblio-948783

ABSTRACT

INTRODUCCIÓN: Pese a que la exposición a pacientes reales sigue estando a la vanguardia de la educación médica, la implementación de simuladores en el entrenamiento y docencia está en uso creciente a nivel global. Muchos de ellos, sin embargo, no entregan una experiencia quirúrgica completa. En este video presentamos un modelo de simulación inanimado de alta fidelidad y bajo costo para el entrenamiento en Nefrectomía parcial asistida por Robot (RAPN). MATERIAL Y MÉTODOS: Utilizando tecnología de impresión 3D se crearon modelos anatómicamente correctos del riñón humano y estructuras relevantes. Estos se consiguieron a través de polimerización gradual de un hidrogel, mediante ciclos de congelación/descongelación, dando distintas características de consistencia y apariencia a los órganos y estructuras, similares a las esperadas durante la cirugía en vivo. Se simularon todas las etapas de RAPN. 3 expertos con >250 casos robóticos fueron asignados al grupo 1; 3 novatos con <50 casos fueron asignados al grupo 2; y 3 estudiantes de medicina que completaron un programa básico de simulación robótica fueron asignados al grupo 3. Se midió validez por expertos, de contenido y de constructo, mediante encuestas y la comparación de las métricas de procedimiento (tiempo de isquemia, la pérdida de sangre, márgenes positivos y la pérdida de sangre estimada) entre los tres grupos. RESULTADOS: El modelo mostró una excelente validación de expertos y de contenido con una puntuación media de 3/5 y 4/5, respectivamente. El tiempo de isquemia medio fue de <15 minutos, entre 20 a 30 minutos y >40 minutos en los grupos 1, 2 y 3, respectivamente. Hubo diferencia estadísticamente significativa en el tiempo operatorio, tiempo de isquemia, márgenes quirúrgicos positivos y la pérdida de sangre estimada (p <0,01), obteniendo una buena validez de constructo. CONCLUSIONES: Este modelo proporciona un modelo realista, de bajo costo y alta fidelidad que ofrece un entrenamiento exhaustivo para RAPN. Esta forma de simulación puede ser una herramienta de enseñanza quirúrgica útil, permitiendo la evaluación objetiva del aprendiz, y entregando a los alumnos una exposición adecuada a un entorno real simulado, para así dominar las habilidades necesarias antes de una experiencia quirúrgica en vivo.(AU)


INTRODUCTION: Although exposure to real patients continues to be at the forefront of medical education, the implementation of simulators in training and teaching is in increasing use, globally. Many of them, however, do not deliver a complete surgical experience. In this video, we present an inanimate simulation model of high fidelity and low cost for training in Robotic-assisted partial nephrectomy (RAPN). MATERIAL AND METHODS: Using 3D printing technology, anatomically correct models of the human kidney and relevant structures were created. These were achieved through the gradual polymerization of a hydrogel, by means of freezing / thawing cycles, giving different characteristics of consistency and appearance to organs and structures, similar to those expected during real surgery. All RAPN stages were simulated. Three experts with> 250 robotic cases were assigned to group 1; three beginners with <50 cases were assigned to group 2; and three medical students who had completed a basic robotic simulation program were assigned to group 3. Validity was measured by experts, content and construct, by means of surveys and comparison of the procedure metrics (ischemia time, blood loss, positive margins and estimated blood loss) among the three groups. RESULTS: The model showed excellent expert and content validation with an average score of 3/5 and 4/5 respectively. The mean ischemia time was <15 minutes, between 20 to 30 minutes and > 40 minutes in groups 1, 2 and 3, respectively. There was statistically significant difference in surgery time, ischemia time, positive surgical margins and estimated blood loss (p <0.01), obtaining good construct validity. CONCLUSIONS: This model provides a realistic, low cost and high fidelity model that offers comprehensive training for RAPN. This type of simulation can be a useful surgical teaching tool, allowing objective evaluation of the apprentice, and giving the students an adequate exposure to a simulated real environment, in order to master the necessary skills before a live surgical experience.(AU)


Subject(s)
Surgery, Computer-Assisted , Nephrectomy , Instructional Film and Video , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL